# Mapping Oklahoma Mesonet Sensor Datastreams

Betsy Van der Veer Martens, University of Oklahoma School of Library & Information Studies

Christopher A. Fiebrich and Bradley Illston, University of Oklahoma Climatological Survey





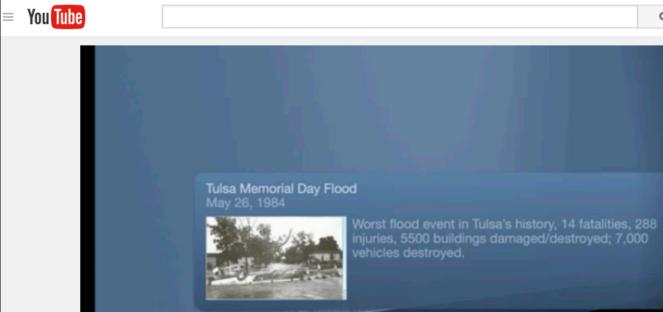
# Oklahoma Droughts

http://www.huffingtonpost.com/2011/04/06/2011-drought-oklahoma\_n\_845419.html



## Oklahoma Floods

http://hyperlocal-blog-what-about-tulsas-levees/











Over 5 billion observations recorded and transmitted during the 20 years of Oklahoma Mesonet operations



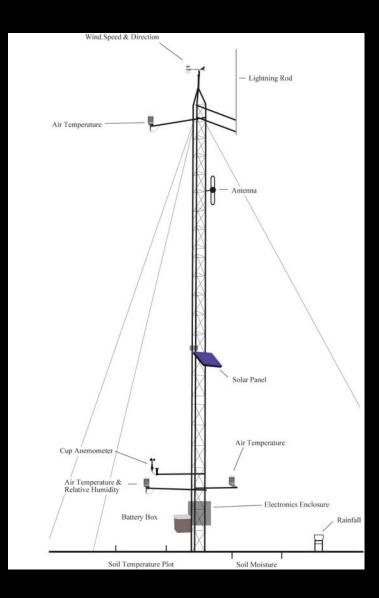
Q

### The Oklahoma Mesonet's First 20 Years

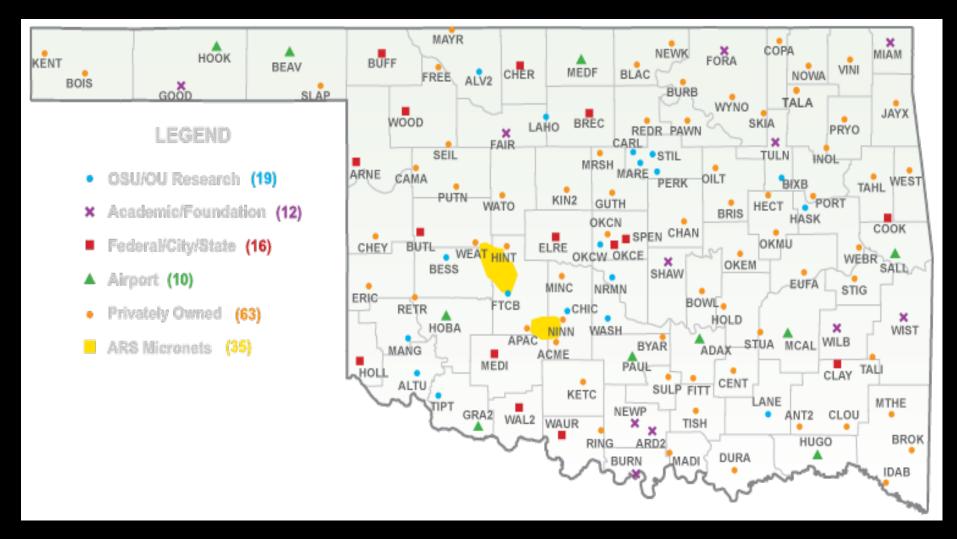


### Published on Jun 30, 2015

This timeline provides a brief overview of the Oklahoma Mesonet from its inception to the 20th anniversary in 2014.


Initial discussions between meteorologist Ken Crawford of the University of Oklahoma and agricultural scientist Ron Elliott of Oklahoma State University about a statewide mesonet began in 1984.

Initial state funding for the Mesonet was allocated in 1989, and the first Mesonet towers were installed in 1991, with 108 sites operational by 1993. There are currently 120 OK Mesonet installations across the state.




### **OK Mesonet Historical Background**

120 remote weather stations 3300 sensors and 250 computers linked About 700,000 observations ingested each day 2-way communications Solar powered 30-day storage in on-site dataloggers Produce ~63,000 products and files for users



### **OK Mesonet Technical Background**



### Oklahoma Mesonet Geography 120 OK Mesonet Sites: Average Spacing is ~30 km (19 miles)

- Every Five Minutes:
  - Air Temperature 1.5 m and 9 m
  - Relative Humidity 1.5 m
  - Rainfall (tipping bucket)
  - Barometric Pressure
  - Solar Radiation 1.8 m
  - Wind Speed/Direction 10 m
  - ▶ Wind Speed 2 m

### **Every Fifteen Minutes:**

- 5 cm soil temperature —native sod
- 10 cm soil temperature — bare soil/native sod
- 25 cm soil temperature — native sod
- 60 cm soil temperature — native sod
- Every Thirty Minutes:
  - 5 cm soil moisture
  - > 25 cm soil moisture
  - ▶ 60 cm soil moisture

## Measurements at an OK Mesonet Site

- 11 full-time staff for site installations and maintenance, lab calibrations, and manual quality assurance
- 10 full-time staff for computer system maintenance/operations, software and web development, and technical support
- 5 full-time staff for climate services, education, formal outreach, and research
- 4 full-time staff for administrative support

# OK Mesonet Technical Support



# OK Mesonet Communication Support

OLETS Delahoma Law Enforcement Telecommunications System

### Home Compliance Services Network Center Management Services Unit Training Services

Contact Us

#### Welcome to OLETS



The Oklahoma Law Enforcement Telecommunications System (OLETS) provides a computerized message switching system created for and dedicated to the criminal justice community. The sole purpose is to provide for the interstate, intrastate and interagency exchange of criminal justice related information. OLETS is operations 24 hours a day, 7 days a week.

The OLETS system is suported by a redundant computerized message switcher located at the Oklahoma Department of Public Safety in Oklahoma City. Two

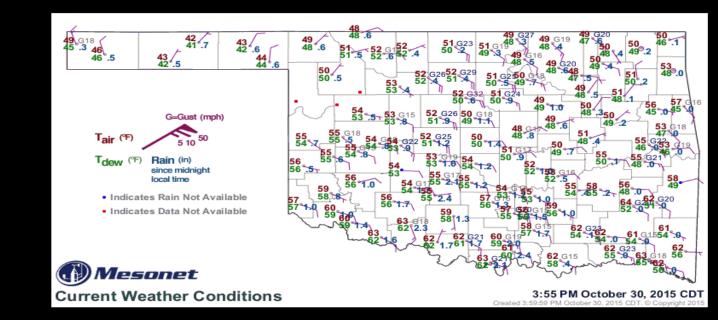
computers have the ability to receive, store and forward message traffic to and from all user agencies. Message traffic includes free form administrative messages from one point to one or more points on the network.

In addition, OLETS supports computer to computer interfaces with computer systems at the Oklahoma Department of Public Safety, Oklahoma Tax Commission, Oklahoma Bureau of Investigation, Office of Juvenile Affairs, National Crime Information Center, National Law Enforcement Telecommunications System, National Oceanic and Atmospheric Administrations' National Weather Service and computer aided dispatch systems in various agencies within Oklahoma.



OLETS users are local, state and federal law enforcement and criminal justice agencies throughout the State of Oklahoma.

©2012 Oklahoma Law Enforcement Telecommunications System - OLETS

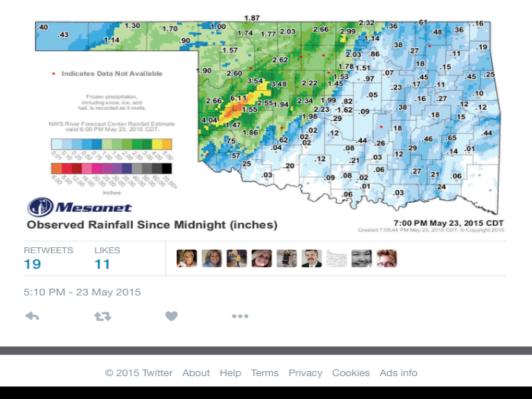



OK Mesonet sensor measurements are made available to users within 5 minutes of collection

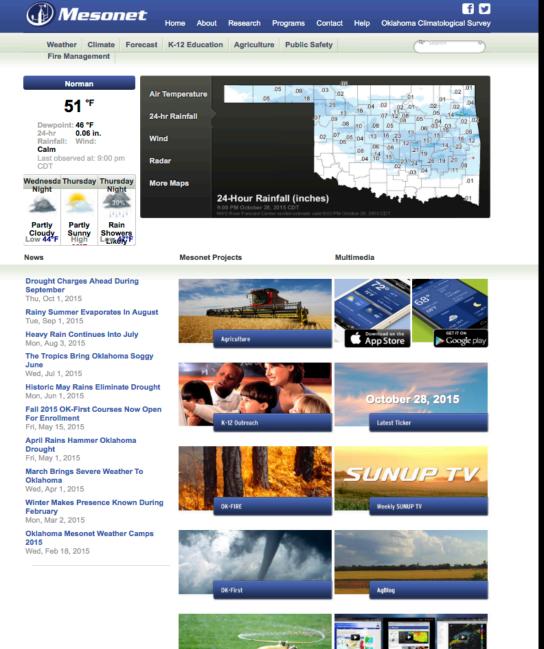
### Nowcasting



Interactive 4panel Display



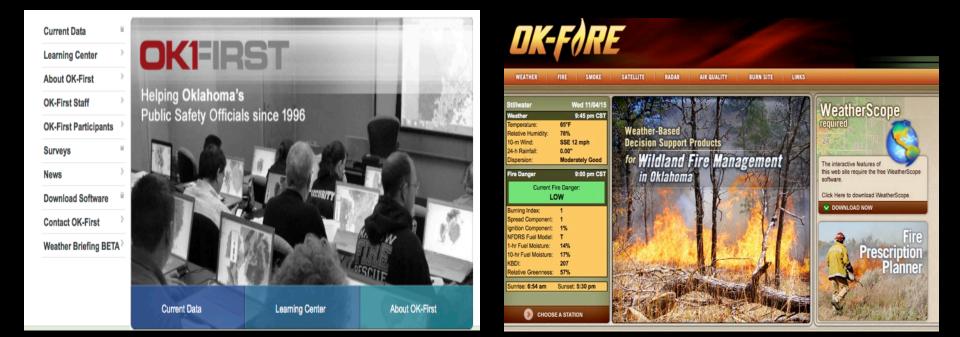

## **OK Mesonet Data for Real-Time Weather**






707pm - Basically, if it's raining. it's flooding. Stay off the roads. Map shows rainfall since midnight. @okmesonet




# **OK Mesonet Data for Real-Time Weather**



SIP - Lawn Irrigation



**Mesonet Tutorials** 




|                         | Crop Horticulture                                           | Livestock Ran                 | ge/Forest Learn N  | lore Age    | Blog |
|-------------------------|-------------------------------------------------------------|-------------------------------|--------------------|-------------|------|
|                         |                                                             |                               |                    |             |      |
| Agriculture Essentials  | Norman Farm Monitor<br>Current Conditions at 9:45 pm CS     | T Nevember 4 20               | hange Mesonet Site | 🗊 Share 🛛 🖬 |      |
| Farm Monitor            | Sunrise: 6:54 am                                            | r - November 4, 20 Cr         | hange Mesonet Site | Share Share | weet |
| Cattle Comfort Advisor> | Sunnse: 0:54 am                                             | Cattle Comfort                | -40                | •           | 120  |
| Drift Risk Advisor      | <b>AF</b> OF                                                | Evapotranspiratio             | ð:05 •             |             | 0.5  |
| Degree Day Heat Units > | 65°F                                                        | Short                         |                    |             |      |
| Irrigation Planner      | Feels Like: 65°F                                            | Evapotranspiratio             |                    | 0.8         |      |
| Drought >               | Humidity: 82%<br>24-hr 0.00 in                              |                               |                    |             |      |
| Dispersion >            | Rainfall:                                                   | Burning Index                 | 0 •                |             | 120  |
| Evapotranspiration      |                                                             |                               |                    |             | +12  |
|                         | Wind Direction                                              | Dispersion                    |                    | •           | 6    |
|                         | SSE                                                         | 10-inch Soll<br>Moisture      |                    | -           | 1    |
|                         | Wind Speed 10- 10.5 mph<br>meter:                           | Keetch-Byram<br>Drought Index | 0                  |             | 800  |
|                         | Wind Speed 2- 9.2 mph<br>meter:                             |                               |                    |             | 60   |
|                         | 3-day Avg 4" Bare 59°F<br>Soll:<br>10-day Rainfall: 1.51 in |                               |                    |             | 60   |
|                         | WEDNESDA THURSDAY THURSDAY<br>NIGHT                         |                               |                    |             |      |

Mostly Clear

Likely

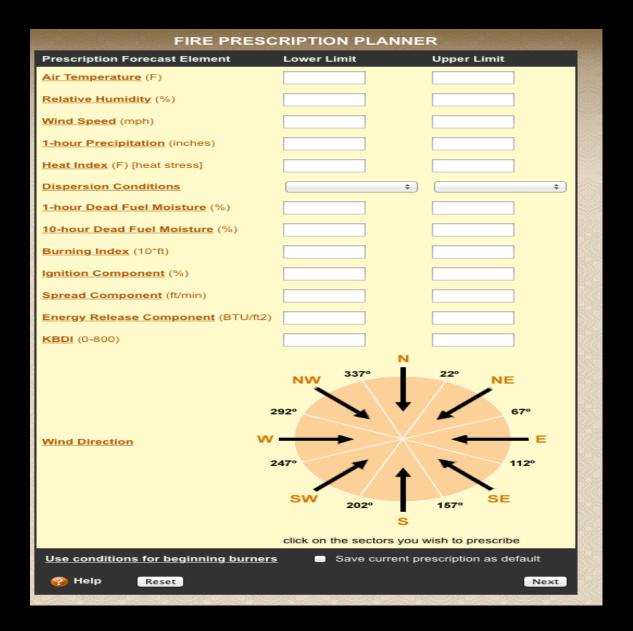
Tstms Likely



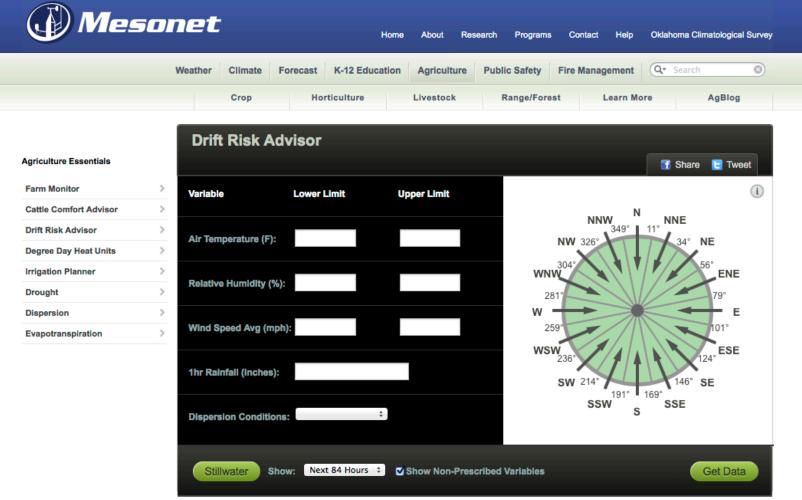
Quick links






Weather Events




The Oklahoma Fire Danger Model is run hourly using weather data from the Oklahoma Mesonet of 120 stations and weekly satellite imagery for assessment of live fuel moisture and loads. In addition, 84-hour weather forecasts from the National Weather Service's NAM model are integrated into the model. Model output can be assessed via the OK-FIRE web site at:

### http://okfire.mesonet.org

In the FIRE section of the web site, click on "CURRENT Fire Danger" or "RECENT Fire Danger" for model output based on the Oklahoma Mesonet (for current and past fire danger conditions up to 30 days ago). There are a variety of products available, including dynamic maps, site-specific charts, and site-specific tables. For model output based on the 84-h NAM forecast, click on "FORECAST Fire Danger". Here as well, dynamic maps, site-specific charts, and site-specific tables are available. Consult <u>The Oklahoma Fire Danger</u> <u>Model</u> for more details on the model and its limitations.



### **OK Mesonet Burn Planner**



The Drift Risk Advisor is a weather-based forecast tool for planning spray applications. It does not replace the best judgement of the applicator or applicator responsibility to follow label restrictions due to actual field conditions.

## **OK Mesonet Drift Risk Advisor**

| Mesona) | et    |         |          | Home           | About     | Research | Programs   | Contact   | Help     | Oklaho | oma Climatological Survey |  |
|---------|-------|---------|----------|----------------|-----------|----------|------------|-----------|----------|--------|---------------------------|--|
| Wea     | ather | Climate | Forecast | K-12 Education | Agricult  | ure Publ | lic Safety | Fire Mana | gement   | Q.*    | Search 🛞                  |  |
|         |       | Сгор    | Но       | rticulture     | Livestock | c   I    | Range/Fore | st        | Learn Mo | оге    | AgBlog                    |  |

#### Grass Hay

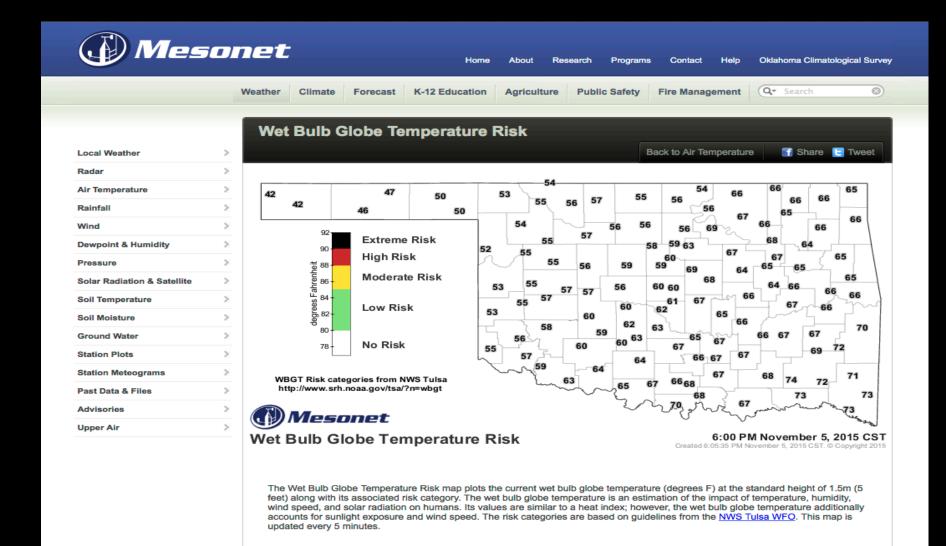
| Grass Hay                     | Irrigation Planner      |                              |                                         |                    |                                |                         |  |  |  |  |  |  |
|-------------------------------|-------------------------|------------------------------|-----------------------------------------|--------------------|--------------------------------|-------------------------|--|--|--|--|--|--|
| Irrigation Planner            |                         |                              |                                         |                    |                                |                         |  |  |  |  |  |  |
| Temp/RH/Dew Graph >           |                         | COPAN                        | Choose Op                               | otions             |                                |                         |  |  |  |  |  |  |
| Drift Risk Advisor            |                         |                              | GRASS HAY                               |                    |                                |                         |  |  |  |  |  |  |
|                               | Irrigation Planner      | r for Copan. Find your las   | t irrigation date and the corresponding | water balance.     |                                | Print Table             |  |  |  |  |  |  |
| Grass Hay Links               | Last Irrigation<br>Date | Evapotranspiration<br>(inch) | Accumulated Evapotranspiration (Inch)   | Rainfall<br>(inch) | Accumulated Rainfall<br>(inch) | Water Balance<br>(inch) |  |  |  |  |  |  |
| OSU Forage Grass Publications | 2015-11-04              | 0.05                         | 0.05                                    | 0.00               | 0.00                           | -0.05                   |  |  |  |  |  |  |
| USDA Oklahoma Hay Report      | 2015-11-03              | 0.07                         | 0.12                                    | 0.01               | 0.01                           | -0.11                   |  |  |  |  |  |  |
| OK Ag Dept In-state Hay List  | 2015-11-02              | 0.07                         | 0.19                                    | 0.01               | 0.02                           | -0.17                   |  |  |  |  |  |  |
| (PDF)                         | 2015-11-01              | 0.07                         | 0.26                                    | 0.00               | 0.02                           | -0.24                   |  |  |  |  |  |  |
| Noble Fdn Hay and Pasture     | 2015-10-31              | 0.05                         | 0.31                                    | 0.05               | 0.07                           | -0.24                   |  |  |  |  |  |  |
| Listing                       | 2015-10-30              | 0.04                         | 0.34                                    | 0.99               | 1.06                           | 0.72                    |  |  |  |  |  |  |
|                               | 2015-10-29              | 0.07                         | 0.42                                    | 0.00               | 1.06                           | 0.64                    |  |  |  |  |  |  |
|                               | 2015-10-28              | 0.09                         | 0.51                                    | 0.00               | 1.06                           | 0.55                    |  |  |  |  |  |  |
|                               | 2015-10-27              | 0.05                         | 0.56                                    | 0.00               | 1.06                           | 0.50                    |  |  |  |  |  |  |
|                               | 2015-10-26              | 0.08                         | 0.64                                    | 0.00               | 1.06                           | 0.42                    |  |  |  |  |  |  |
|                               | 2015-10-25              | 0.09                         | 0.73                                    | 0.00               | 1.06                           | 0.33                    |  |  |  |  |  |  |
|                               | 2015-10-24              | 0.07                         | 0.80                                    | 0.00               | 1.06                           | 0.26                    |  |  |  |  |  |  |
|                               | 2015-10-23              | 0.07                         | 0.86                                    | 0.01               | 1.07                           | 0.21                    |  |  |  |  |  |  |
|                               | 2015-10-22              | 0.10                         | 0.97                                    | 0.03               | 1.10                           | 0.13                    |  |  |  |  |  |  |
|                               | 2015-10-21              | 0.12                         | 1.09                                    | 0.00               | 1.10                           | 0.01                    |  |  |  |  |  |  |
|                               | 2015-10-20              | 0.20                         | 1.29                                    | 0.00               | 1.10                           | -0.19                   |  |  |  |  |  |  |
|                               | 2015-10-19              | 0.19                         | 1.48                                    | 0.00               | 1.10                           | -0.38                   |  |  |  |  |  |  |
|                               | 2015-10-18              | 0.13                         | 1.61                                    | 0.00               | 1.10                           | -0.51                   |  |  |  |  |  |  |
|                               | 2015-10-17              | 0.12                         | 1.73                                    | 0.00               | 1.10                           | -0.63                   |  |  |  |  |  |  |
|                               | 2015-10-16              | 0.12                         | 1.85                                    | 0.01               | 1 11                           | -0.74                   |  |  |  |  |  |  |

# **OK Mesonet Irrigation Planner**





### Using the Mesonet Cattle Comfort Advisor


### INTRODUCTION

Comfortable cattle are productive cattle. Comfortable cattle gain better and maintain a higher level of health. The Mesonet Cattle Comfort Advisor estimates cattle comfort levels based on data from the Oklahoma Mesonet and National Weather Service forecasts. The Mesonet Cattle Comfort Advisor runs continuously monitoring heat or cold stress on a year-round basis.

Stress levels are calculated using a new stress formula

developed by animal scientists affiliated with the University of Nebraska. Additional weather variables have been added into this new cattle stress index, compared to traditional heat and cold stress models. Sunlight adds to heat stress, while in cold situations it decreases cold stress. In the traditional wind chill model, wind increases cold stress. That stays the same, while in heat situations wind is a new factor that decreases heat stress. In the old heat stress index, relative humidity increased heat stress. In the new Cattle Comfort Advisor, relative humidity is still a factor in increasing heat stress and is also included as a factor that increases cold stress.

# **OK Mesonet Cattle Comfort Advisor**



### **OK Mesonet Wet Bulb Globe Temperature Risk**

|                             | DNET Home About Research Programs Contact Help Oklahoma Climatological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                             | Weather         Climate         Forecast         K-12 Education         Agriculture         Public Safety         Fire Management         Q+ Search         Search |  |  |  |  |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                             | Daily Data Retrieval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Local Weather               | > Back to Past Data & Files 📑 Share 🔁 Tweet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Radar                       | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Air Temperature             | Step 1: Select Beginning and Ending Dates Month Day Year Step 2: Select Stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Rainfall                    | Beginning Date         January         1         2015         ACME - Acme<br>ADAX - Ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Wind                        | Ending Date         January         1         2015         ALTU - Altus           ALTU - Altus         ALVA - Alva*         Alva*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Dewpoint & Humidity         | ALV2 - Alva<br>ANTL - Antiers*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Pressure                    | ANT2 - Antlers<br>APAC - Apache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Solar Radiation & Satellite | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Soil Temperature            | > * Retired Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Soil Moisture               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Ground Water                | Step 3: Select Variables Step 4: Get Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Station Plots               | TMAX, Maximum Air Temperature [F] TMIN, Minimum Air Temperature [F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| Station Meteograms          | TAVG, Average Air Temperature [F] Email address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Past Data & Files           | DMIN, Minimum Dew Point Temperature [F]<br>DAVG, Average Dew Point Temperature [F]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Advisories                  | HMAX, Maximum Relative Humidity (pct)<br>HMIN, Minimum Relative Humidity (pct)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Upper Air                   | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                             | To obtain a comma-delimited daily file, follow the steps below:<br>1. Select the beginning month, day, and year from the drop down menus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                             | <ol> <li>Select the ending month, day and year from the drop down menus.</li> <li>Select the station(s) from the list box.</li> <li>Windows Users: To select a range of sites, hold down the Shift key and drag your cursor over the desired sites. To select multiple sites, hold down the Control key and click on individual sites.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                             | <ol> <li>Mac Users: To select a range of sites, hold down the Shift key and drag your cursor over the desired sites. To select multiple sites, hold down the Command key and click on individual sites.</li> <li>Select the variables you want to view.</li> <li>Windows Users: To select a range of sites, hold down the Shift key and drag your cursor over the desired variables. To select</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                             | <ul> <li>multiple variables, hold down the Control key and click on individual variables.</li> <li>2. Mac Users: To select a range of sites, hold down the Shift key and drag your cursor over the desired variables. To select multiple variables, hold down the Command key and click on individual variables.</li> <li>5. Enter your e-mail address (required for large requests).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |

### OK Mesonet Data Available on the Web

# ... and as an App.

#### Overview Music Video Charts

#### View More by This Developer

### Mesonet

By Oklahoma Mesonet

Open iTunes to buy and download apps.



Compatibility: Requires iOS 7.0 or later. Compatible with iPhone, iPad, and iPod touch. Customer Ratings Current Version: ★★★★ 5 Ratings All Versions: ★★★★ 54 Ratings

View in iTunes

Category: Weather Updated: Jan 12, 2015 Version: 1.5.2

Size: 2.6 MB Languages: English, Spanish Seller: Oklahoma Mesonet © Board of Regents of the University of Oklahoma Rated 4+

Free

#### Description

Hello Oklahomans! The Mesonet app brings a host of Oklahoma weather information right to your phone, including data from the award-winning Oklahoma Mesonet, forecasts, radar and severe weather advisories. Get fast access to the same info that the experts use!

Oklahoma Mesonet Web Site > Mesonet Support >

### What's New in Version 1.5.2

- Map Favorites can now be re-ordered.
- URL Cache Error dialog issues resolved.
- Indicators for when forecast & local data are loading.

...More

...More

### iPhone Screenshot

Local Maps

| Carrier 🗢     | 4:11 PM            | -             |  |  |  |  |  |  |  |
|---------------|--------------------|---------------|--|--|--|--|--|--|--|
| ~             | Norman             | Q             |  |  |  |  |  |  |  |
| Observed at 4 | :05 PM             |               |  |  |  |  |  |  |  |
| 89            | O Dewpoint<br>57°F |               |  |  |  |  |  |  |  |
| 03            | Wind               |               |  |  |  |  |  |  |  |
| Feels Li      | ke SSW at a        | SSW at 20 mph |  |  |  |  |  |  |  |
|               | 24-hour raint      |               |  |  |  |  |  |  |  |
| <b>88</b> °   | 0.00 in            | iches         |  |  |  |  |  |  |  |
| roday         | TONIGHT            |               |  |  |  |  |  |  |  |
|               | High<br>90°        | Low<br>69°    |  |  |  |  |  |  |  |
| Wind S at 23  | imph Wind Sat      | 17-22 mph     |  |  |  |  |  |  |  |
| Breezy        | Partly Clo         | oudy          |  |  |  |  |  |  |  |

Radar

Advisories

More

| arrier 穼    | 4:11 PM    |                  | -    |
|-------------|------------|------------------|------|
|             | Maps       |                  |      |
| Favorites   |            |                  | >    |
| Current Co  | onditions  |                  | >    |
| Air Temper  | rature     |                  | >    |
| Rainfall    |            |                  | >    |
| Wind        |            |                  | >    |
| Dewpoint    | & Humidity | /                | >    |
| Soil Moistu | ure/Tempe  | rature           | >    |
| Pressure    |            |                  | >    |
| Radar       |            |                  | >    |
| Solar Radi  | ation & Sa | tellite          | >    |
| 1 -         |            | A <mark>2</mark> | 000  |
| Local Ma    | ps Radar   | Advisories       | More |

# **Policy and OK Mesonet**

### Low oil prices, lower water reserves challenge Oklahoma

By Joel Dean The Duncan Banner | Posted: Thursday, February 19, 2015 3:45 am

With water woes and falling gas prices, Oklahoma is facing economic and natural hardships. State Rep. Tom Cole sat down with The Duncan Banner staff and went over some of the federal and state responses to these trying situations.

Cole said that one of the big things the federal government is doing to help is the science that must precede any solution.

"In Oklahoma, looking at a \$600 million budget shortfall, the idea of investing in water infrastructure is pretty tough," Cole said. "One area I think we are doing some pretty good work is in research.



Tom Cole Tom Cole

"There is everything from groundwater research through the

geological society, the use of Mesonet data on water flows and things like that. We are trying to get a much better understanding on things that are available. I think we are trying, at least through pilot programs, to

|      |     |       |      | Climat | ological | Surve | y and | the Okl | ahoma M | esonet | - all rig | ghts rese | rved |      |      |      |        |       |      |      |      |      |        |
|------|-----|-------|------|--------|----------|-------|-------|---------|---------|--------|-----------|-----------|------|------|------|------|--------|-------|------|------|------|------|--------|
|      |     | 30 00 |      |        |          |       |       |         |         |        |           | 22.20     |      | -    |      | ma10 | mm 1 0 | ma0.5 | -    | -    |      |      | mm 6.0 |
| STID |     | TIME  | RELH | TAIR   | WSPD     | WVEC  | WDIR  | WDSD    | WSSD    | WMAX   | RAIN      | PRES      | SRAD | TA9M | WS2M | TS10 | TB10   | TS05  | TS25 | TS60 | TR05 | TR25 | TR60   |
| ACME | 110 | 0     | 58   | 15.5   | 3.4      | 3.4   | 75    | 8.4     | 0.4     | 4.3    | 0.00      | 966.22    | 0    | 16.0 | 2.3  | 17.1 | 17.0   | 17.6  | 17.3 | 18.5 | 1.52 | 1.63 | 3.58   |
| ADAX | 1   | 0     | 74   | 12.6   | 1.4      | 1.4   | 39    | 10.0    | 0.3     | 2.1    | 0.00      | 978.35    | 0    | 15.6 | 0.4  | 19.3 | 18.3   | 18.8  | 18.6 | -998 | 2.74 | 1.89 | -998   |
| ALTU | 2   | 0     | 53   | 18.7   | 6.7      | 6.6   | 79    | 7.0     | 1.1     | 8.9    | 0.00      | 962.19    | 1    | 19.0 | 4.9  | 18.8 | 20.5   | 18.6  | 18.5 | -998 | 2.09 | 1.96 | -998   |
| ALV2 | 116 | 0     | 34   | 11.7   | 3.7      | 3.7   | 84    | 6.7     | 0.5     | 4.9    | 0.00      | 962.19    | 0    | 12.3 | 2.1  | 15.0 | 17.5   | 15.3  | 15.9 | -998 | 3.88 | 3.82 | -998   |
| ANT2 | 135 | 0     | 71   | 14.2   | 0.0      | 0.0   | 145   | 0.0     | 0.1     | 0.2    | 0.00      | 992.16    | 0    | 16.7 | 0.0  | 20.3 | 19.4   | 19.4  | 19.8 | 20.4 | 1.98 | 1.90 | 3.56   |
| APAC | 111 | 0     | 61   | 14.5   | 3.6      | 3.6   | 69    | 6.1     | 0.4     | 4.6    | 0.00      | 961.11    | 0    | 15.3 | 2.4  | 16.8 | 16.0   | 16.0  | 17.0 | 18.1 | -999 | 1.65 | 3.86   |
| ARD2 | 126 | 0     | 61   | 17.4   | 2.2      | 2.2   | 74    | 5.1     | 0.2     | 2.7    | 0.00      | 980.78    | 0    | 18.5 | 1.2  | 19.1 | 19.5   | 19.5  | 19.4 | 20.4 | 1.81 | 1.50 | 1.62   |
| ARNE | 6   | 0     | 56   | 10.5   | 3.2      | 3.2   | 94    | 6.4     | 0.3     | 4.0    | 0.00      | 929.94    | -999 | 11.5 | 1.3  | 14.4 | 16.3   | 14.1  | 14.6 | 17.1 | 1.95 | 2.06 | 3.51   |
| BEAV | 8   | 0     | 53   | 9.3    | 2.9      | 2.9   | 117   | 3.2     | 0.2     | 3.3    | 0.00      | 925.86    | 1    | 11.0 | 0.3  | 13.9 | 15.2   | 14.3  | 14.4 | 16.9 | 1.99 | 1.98 | 2.32   |
| BESS | 9   | 0     | 55   | 12.5   | 3.7      | 3.7   | 76    | 4.6     | 0.3     | 4.6    | 0.00      | 953.07    | 1    | 13.3 | 0.8  | 17.8 | 18.9   | 17.1  | 16.9 | -998 | 2.29 | 3.80 | -998   |
| BIXB | 10  | 0     | 46   | 12.8   | 2.6      | 2.6   | 41    | 3.5     | 0.2     | 3.2    | 0.00      | 992.90    | 0    | 14.1 | 1.6  | 17.3 | 16.4   | 17.2  | 17.7 | 19.1 | -999 | 2.15 | 2.48   |
| BLAC | 11  | 0     | 40   | 9.5    | 3.3      | 3.3   | 39    | 3.6     | 0.2     | 3.9    | 0.00      | 978.74    | 0    | 12.1 | 1.5  | 16.8 | 17.7   | 16.5  | 17.3 | 18.6 | 2.87 | 2.40 | 2.56   |
| BOIS | 12  | 0     | 63   | 9.3    | 3.5      | 3.5   | 131   | 5.6     | 0.3     | 4.3    | 0.00      | 870.16    | 1    | 9.4  | 2.5  | 13.2 | 14.3   | 13.4  | 13.6 | 15.6 | 1.79 | 1.85 | 3.69   |
| BOWL | 13  | 0     | 55   | 13.1   | 1.0      | 0.9   | 45    | 16.8    | 0.4     | 1.8    | 0.00      | 980.47    | 0    | -998 | 0.0  | 18.7 | 19.0   | 17.7  | 18.1 | 19.2 | 1.41 | 3.11 | 3.03   |
| BREC | 14  | 0     | 45   | 10.2   | 3.0      | 3.0   | 53    | 2.5     | 0.2     | 3.5    | 0.00      | 972.64    | 0    | 12.1 | 1.2  | 17.4 | 18.7   | 16.2  | 17.1 | 18.7 | 3.84 | 3.78 | 3.91   |
| BRIS | 15  | 0     | 52   | 11.9   | 1.4      | 1.4   | 65    | 6.1     | 0.2     | 1.9    | 0.00      | 985.90    | 0    | 13.8 | 0.0  | 15.6 | 16.3   | 15.4  | 16.5 | 17.3 | 1.72 | 1.99 | 2.29   |
| BROK | 124 | 0     | 74   | 14.9   | 0.1      | 0.1   | 310   | 0.0     | 0.1     | 0.4    | 0.25      | 999.29    | 0    | 16.1 | 0.1  | 19.7 | 19.9   | 20.1  | -998 | -998 | -999 | -998 | -998   |
| BUFF | 16  | 0     | 44   | 11.4   | 2.0      | 2.0   | 118   | 11.2    | 0.5     | 3.3    | 0.00      | 948.51    | 1    | 12.0 | 1.3  | 15.2 | 16.8   | 14.0  | 14.8 | 17.4 | 2.07 | 1.97 | 3.47   |
| BURB | 17  | 0     | 35   | 10.9   | 2.5      | 2.5   | 55    | 9.0     | 0.4     | 3.5    | 0.00      | 979.36    | 0    | -998 | 1.3  | 16.6 | 19.3   | -999  | -998 | -998 | 2.88 | -998 | -998   |
| BURN | 18  | 0     | 52   | 18.2   | 2.7      | 2.7   | 79    | 5.4     | 0.2     | 3.4    | 0.00      | 984.90    | 0    | 19.9 | 1.1  | 20.3 | 19.4   | 20.3  | 19.7 | 20.5 | 1.64 | 1.69 | 1.62   |
| BUTL | 19  | 0     | 53   | 12.2   | 3.8      | 3.8   | 84    | 4.9     | 0.3     | 4.4    | 0.00      | 952.34    | 1    | 13.4 | 1.8  | 14.8 | 17.1   | 15.3  | 15.0 | 17.8 | 2.11 | 2.33 | 3.45   |
| BYAR | 20  | 0     | 59   | 14.3   | 2.7      | 2.7   | 63    | 7.5     | 0.3     | 3.5    | 0.00      | 972.47    | 0    | 15.3 | 1.3  | 18.4 | 17.5   | 18.0  | 18.5 | 19.4 | 1.39 | 2.64 | 3.46   |
| CAMA | 22  | 0     | 50   | 11.2   | 3.8      | 3.8   | 74    | 2.2     | 0.2     | 4.3    | 0.00      | 944.85    | 1    | 12.3 | 1.7  | 14.6 | 18.0   | 14.6  | 15.2 | -998 | 2.03 | 2.69 | -998   |
| CARL | 131 | 0     | 40   | 13.0   | 1.3      | 1.3   | 60    | 3.7     | 0.2     | 1.6    | 0.00      | 979.38    | 0    | 13.9 | 0.0  | 17.2 | 18.6   | 17.2  | 17.3 | 18.7 | 3.82 | 3.83 | 3.92   |
| CENT | 23  | 0     | 58   | 15.9   | 1.9      | 1.8   | 55    | 14.1    | 0.5     | 3.1    | 0.00      | 988.28    | 0    | 17.0 | 1.0  | 18.5 | 18.6   | 19.0  | 18.4 | 19.3 | 1.45 | 1.36 | 2.81   |
| CHAN | 24  | 0     | 48   | 12.8   | 2.7      | 2.7   | 61    | 6.1     | 0.2     | 3.4    | 0.00      | 979.53    | 0    | 14.8 | 1.2  | 17.0 | 16.7   | 16.6  | 17.5 | -998 | 1.86 | 3.60 | -998   |
| CHER | 25  | 0     | 31   | 12.7   | 2.8      | 2.7   | 55    | 12.6    | 0.6     | 4.7    | 0.00      | 971.41    | 0    | 12.7 | 2.0  | 17.0 | 18.7   | 17.0  | 16.8 | 18.3 | 3.87 | 3.89 | 3.72   |
| CHEY | 26  | 0     | 60   | 10.8   | 3.3      | 3.3   | 91    | 5.0     | 0.2     | 3.9    | 0.00      | 932.58    | 1    | 12.2 | 1.4  | 15.1 | 17.8   | 15.1  | 15.0 | 16.7 | 1.92 | 1.64 | 2.08   |
| CHIC | 27  | 0     | 62   | 14.9   | 1.9      | 1.9   | 70    | 5.1     | 0.2     | 2.6    | 0.25      | 974.28    | 0    | 15.4 | 1.2  | 17.4 | 17.7   | 17.5  | -998 | -998 | -999 | -998 | -998   |
| CLAY | 29  | 0     | 60   | 17.5   | 2.7      | 2.6   | 34    | 9.6     | 0.5     | 3.7    | 0.00      | 990.94    | 0    | 18.3 | 1.4  | 20.4 | 20.2   | 20.4  | -998 | -998 | 1.53 | -998 | -998   |
| CLOU | 30  | 0     | 53   | 16.2   | 0.0      | 0.0   | 0     | 0.0     | 0.0     | 0.0    | 0.00      | 986.76    | 0    | 18.2 | 0.4  | 20.0 | 19.1   | 19.6  | 19.5 | -998 | 1.95 | 2.11 | -998   |
| COOK | 31  | 0     | 75   | 10.1   | 0.2      | 0.2   | 129   | 1.2     | 0.2     | 0.6    | 0.00      | 978.85    | 0    | 11.2 | 0.0  | 16.8 | 16.9   | 16.4  | -998 | -998 | 2.06 | -998 | -998   |
| COPA | 32  | 0     | 41   | 9.3    | 1.4      | 1.3   | 72    | 2.8     | 0.1     | 1.6    | 0.00      | 985.85    | 0    | 10.4 | 0.3  | 16.7 | 17.1   | 16.5  | 16.8 | 17.9 | 2.96 | 2.39 | 1.86   |
| DURA | 33  | 0     | 53   | 18.4   | 2.1      | 2.1   | 71    | 4.7     | 0.2     | 2.5    | 0.00      | 988.79    | 0    | 20.1 | 1.0  | 20.4 | 19.7   | 20.0  | 20.0 | 20.9 | 1.43 | 1.47 | 3.54   |
| ELKC | 139 | 0     | 55   | 12.8   | 4.2      | 4.2   | 71    | 6.0     | 0.6     | 5.9    | 0.00      | 944.34    | 1    | 13.4 | 2.1  | 15.6 | 17.3   | 15.4  | 15.8 | 17.6 | 2.11 | 2.88 | 3.60   |
| ELRE | 34  | 0     | 56   | 9.9    | 2.1      | 2.1   | 66    | 2.5     | 0.1     | 2.4    | 0.00      | 964.26    | 0    | 13.1 | 0.0  | 15.8 | 16.5   | 15.5  | 16.1 | 17.9 | 2.13 | 2.40 | 2.49   |
| ERIC | 35  | 0     | 60   | 12.7   | 3.9      | 3.9   | 79    | 6.4     | 0.5     | 5.5    | 0.00      | 942.12    | 1    | 13.4 | 2.2  | -999 | 16.9   | -999  | -999 | -999 | 1.77 | 1.67 | 2.06   |
| EUFA | 36  | 0     | 66   | 13.1   | 0.9      | 0.9   | 11    | 15.4    | 0.3     | 1.6    | 0.00      | 990.28    | 0    | 13.9 | 0.0  | 17.5 | 17.7   | 16.9  | 17.9 | 19.2 | 1.62 | 1.64 | 1.45   |
| FAIR | 37  | 0     | 39   | 12.3   | 2.8      | 2.8   | 88    | 4.6     | 0.2     | 3.5    | 0.00      | 966.14    | 0    | 13.5 | 1.4  | 16.5 | 17.7   | 15.8  | 16.6 | 18.7 | 2.09 | 3.38 | 3.52   |
|      |     |       |      |        |          |       |       |         |         |        |           |           |      |      |      |      |        |       |      |      |      |      |        |

# Oklahoma Mesonet Sensor Data



Weather Climate K-12 Education Forecast Agriculture

Public Safety Fire Management

Q- Search

0)

**Journal Articles** Books > **Book Chapters** Proceedings and Preprints > Abstracts Theses and Dissertations > Reports Miscellaneous

### **Journal Articles**

>

>

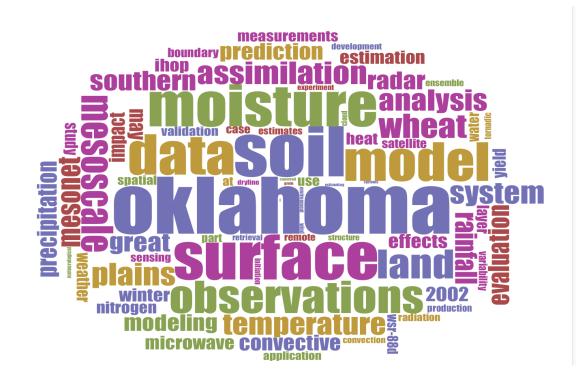
5

5

>

Abreu, S.L. C.B. Godsey, J.T. Edwards, and J.G. Warren, 2011: Assessing carbon and nitrogen stocks of no-till systems in Oklahoma. Soil Tillage Research, 117, 28-33. DOI: 10.1016/j.still.2011.08.004.

Ackerman, C. J., H. T. Purvis, G. W. Horn, S. I. Paisley, R. R. Reuter, and T. N. Bodine, 2001: Performance of light vs heavy steers grazing Plains Old World bluestem at three stocking rates. J. Animal Science, 79, 493-499.


Adams-Selin, R. D., and R. H. Johnson, 2010: Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes. Monthly Weather Review, **138**, 212-227.

Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeorol., 4. 1147-1167.

Albanese, G., C.A. Davis, and B.W. Compton, 2012: Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation. Landscape Ecol., 27, 1465-1479. (DOI: 10.1007/s10980-012-9803-7).

### Scientific papers referencing Oklahoma Mesonet

|      | 101 ! (c) 2015 Oklahoma Climatological Survey and the Oklahoma Mesonet - all rights reserved |      |      |      |            |      |            |            |              |      |       |         |              |          |             |      |                     |      |       |      |      |      |      |
|------|----------------------------------------------------------------------------------------------|------|------|------|------------|------|------------|------------|--------------|------|-------|---------|--------------|----------|-------------|------|---------------------|------|-------|------|------|------|------|
|      | 015 10                                                                                       |      |      |      |            |      |            |            |              |      |       |         |              |          |             |      |                     |      |       |      |      |      |      |
| STID |                                                                                              | TIME | RELH | TAIR | WSPD       | WVEC | WDIR       | WDSD       | WSSD         | WMAX | RAIN  | PRES    | SRAD         | TA9M     | WS2M        | TS10 | TB10                | TS05 | TS25  | TS60 | TR05 | TR25 | TR60 |
| ACME | 110                                                                                          | 0    | 58   | 15.5 | 3.4        | 3.4  | 75         | 8.4        | 0.4          | 4.3  | 0.00  | 966.22  | 0            | 16.0     | 2.3         | 17.1 | 17.0                | 17.6 | 17.3  | 18.5 | 1.52 | 1.63 | 3.58 |
| ADAX | 1                                                                                            | 0    | 74   | 12.6 | 1.4        | 1.4  | 39         | 10.0       | 0.3          | 2.1  | 0.00  | 978.35  | 0            | 15.6     | 0.4         | 19.3 | 18.3                | 18.8 | 18.6  | -998 | 2.74 | 1.89 | -998 |
| ALTU | 2                                                                                            | 0    | 53   | 18.7 | 6.7        | 6.6  | 79         | 7.0        | 1.1          | 8.9  | 0.00  | 962.19  | 1            | 19.0     | 4.9         | 18.8 | 20.5                | 18.6 | 18.5  | -998 | 2.09 | 1.96 | -998 |
| ALV2 | 116                                                                                          | 0    | 34   | 11.7 | 3.7        |      | <i>Γ</i> Π | .7         | 0.5          | 4.9  |       | 962.19  | 0            | .3       | 2.1         | 15.0 | 7.5                 | 15.3 | 15.9  | -998 | 3.88 | 3.82 | -998 |
| ANT2 | 135                                                                                          | 0    | 71   | 14.2 | 0.0        | 1.0  | 14         | 1.0        |              | 0.2  | .00   |         | $\frown$     | \ ŀŸ     |             |      | 1 E <sup>14</sup> - | 19.4 | 19.8  | 20.4 | 1.98 | 1.90 | 3.56 |
| APAC | 111                                                                                          | 0    | 61   | 14.5 | 3.6        | 2.0  | 1          |            |              | 4.6  | .00   | 9.11    |              | )    -[- |             | 16.8 | .6.0                | 16.0 | 17.0  | 18.1 | -999 | 1.65 | 3.86 |
| ARD2 | 126                                                                                          | 0    | 61   | 17.4 | 2.2        | 2.2  |            | <b>.</b> . | .2           | 9.7  | .00   | 9.78    |              | .5       | .2          |      | C.                  | 19.5 | 19.4  | 20.4 | 1.81 | 1.50 | 1.62 |
| ARNE | 6                                                                                            | 0    | 56   | 10.5 | 3.2        | 3.2  | 94         | 6.4        | 0.3          | 4.0  | 0.00  | 929.94  | -999         | 2.5      | 1.3         | 14.4 | 16.3                | 14.1 | 14.6  | 17.1 | 1.95 | 2.06 | 3.51 |
| BEAV | 8                                                                                            | 0    | 53   | 9.3  | 2.9        | 2.9  | 117        | 3.2        | 0.2          | 3.3  | 0.00  | 925.86  | 1            | 11.0     | 0.3         | 13.9 | 15.2                | 14.3 | 14.4  | 16.9 | 1.99 | 1.98 | 2.32 |
| BESS | 9                                                                                            | 0    | 55   | 12.5 |            | 3.7  | 76         | 4.6        | 0.3          | 4.6  | 0.00  | 952.07  | 1            | 13.3     | 0.8         | 17   | 8.9                 | 17.1 | 16.9  | -998 | 2.29 | 3.80 | -998 |
| BIXB | 10                                                                                           | 0    | 46   | 12.8 | 2.6        | - 2  | 41         |            | L'           |      | 20    | ነር ጋና   |              | 4.1      |             | τþ   |                     | 17   | 17.7  | 19.1 | -999 | 2.15 | 2.48 |
| BLAC | 11                                                                                           | 0    | 40   | 9.5  | 3.3        |      | 9          | 3          | 0.2          |      |       | 9.74    |              | 2.       | 5           | 16   | 1.7                 |      | 17.3  | 18.6 | 2.87 | 2.40 | 2.56 |
| BOIS | 12                                                                                           | 0    | 63   | 9.3  | C          | 3    | 31         | 5          | 0.1          |      | 7     | 7896    |              | 9.       | 5           | 13   | 4.3                 |      | 713.6 | 15.6 | 1.79 | 1.85 | 3.69 |
| BOWL | 13                                                                                           | 0    | 55   | 13.1 | 1.0        | 0.9  | 45         | 16.8       | 0.4          | 1.8  | 0.00  | 980.47  | 0            | -99      | .0          | 18.7 | 19.0                | 17.7 | 18.1  | 19.2 | 1.41 | 3.11 | 3.03 |
| BREC | 14                                                                                           | 0    | 45   | 10.2 | 3.0        | 3.0  | 53         | 2.5        | 0.2          | 3.5  | 0.00  | 972.64  | 0            | 12.1     | 1.2         | 17.4 | 18.7                | 16.2 | 17.1  | 18.7 | 3.84 | 3.78 | 3.91 |
| BRIS | 15                                                                                           | 0    | 52   | 11.9 | 1.4        | 1.4  | 65         | 6.1        | 0.2          | 1.9  | 0.00  | 985.90  | 0            | 13.      | 0.0         | 15 6 | 16.3                | 15.4 | 16.5  | 17.3 | 1.72 | 1.99 | 2.29 |
| BROK | 124                                                                                          | 0    | 74   | 14.9 | 0.1        | 0.1  | 210        | 20         |              | 0,4  | 0.25  | -999.29 | 0            | 14       | -           | d La | 10 9                | 20.1 | -998  | -998 | -999 | -998 | -998 |
| BUFF | 16                                                                                           | 0    | 44   | 11.4 | 2.0        | 2.0  | 914        |            | 5            | 3    |       | ) 18. ( | 1            | 12.      |             | 1 2  | 10                  | 14.0 | 14.8  | 17.4 | 2.07 | 1.97 | 3.47 |
| BURB | 17                                                                                           | 0    | 35   | 10.9 | 2.5        | 2.5  | <b>D</b>   |            | 7 4          | 3    | 5).(C | 9.      | 0            | 90       |             | 116  | 19                  | -999 | -998  | -998 | 2.88 | -998 | -998 |
| BURN | 18                                                                                           | 0    | 52   | 18.2 | 2.7        | 2.7  | 79         | 5.4        | 0.2          | 3.4  | 0.00  | 984.90  | 0            | 19.9     | 1.1         | 20.3 | 19.4                | 20.3 | 19.7  | 20.5 | 1.64 | 1.69 | 1.62 |
| BUTL | 19                                                                                           | 0    | 53   | 12.2 | 3.8        | 3.8  | 84         | 4.9        | 0.3          | 4.4  | 0.00  | 952.34  | 1            | 13.4     | 1.8         | 14.8 | 17.1                | 15.3 | 15.0  | 17.8 | 2.11 | 2.33 | 3.45 |
| BYAR | 20                                                                                           | 0    | 59   | 14.3 | 2.7        | 2.7  | 63         | 7.5        | 0.3          | 3.5  | 0.00  | 972.47  | _0           | 15.3     | 1.3         | 18.4 | 17.5                | 18.0 | 18.5  | 19.4 | 1.39 | 2.64 | 3.46 |
| CAMA | 22                                                                                           | 0    | 50   | 11.2 | <b></b> _8 | 3.8  | 74         | L2         | 0.2          | 4.3  | 0.00  | 944.85  | _1           | 12.3     | 1.7         | J .6 | <b>_18</b> C        | -4.6 | 15.2  | -998 | 2.03 | 2.69 | -998 |
| CARL | 131                                                                                          | 0    | 40   | 13.0 | h r3/      |      | 60         |            | <u>) (</u> ר | 6    |       | 9 03-   | ▶ <b>0</b> ∕ |          | 0           | 7,2  | 18                  | 1.   | 3     | 18.7 | 3.82 | 3.83 | 3.92 |
| CENT | 23                                                                                           | 0    | 58   | 15.9 | .9         |      | 55         | 14         | ).(          |      | 100   | 9 .28   | 7 0          | 17-17    | 1.          | .5   | 18                  | 9. ( | 194   | 19.3 | 1.45 | 1.36 | 2.81 |
| CHAN | 24                                                                                           | 0    | 48   | 12.8 |            | 2.1  | 61         | 6.1        | -0.2         | 3.4  | 0.00  | 979.00  |              | 17.8     | <b>1.</b> 2 | 1    | 16.7                | 4.6  | 11.5  | -998 | 1.86 | 3.60 | -998 |
| CHER | 25                                                                                           | 0    | 31   | 12.7 | 2.8        | 2.7  | 55         | 12.6       | 0.6          | 4.7  | 0.00  | 971.41  | 0            | 12.7     | 2.0         | 17.0 | 18.7                | 17.0 | 16.8  | 18.3 | 3.87 | 3.89 | 3.72 |
| CHEY | 26                                                                                           | 0    | 60   | 10.8 | 3.3        | 3.3  | 91         | 5.0        | 0.2          | 3.9  | 0.00  | 932.58  | 1            | 12.2     | 1.4         | 15.1 | 17.8                | 15.1 | 15.0  | 16.7 | 1.92 | 1.64 | 2.08 |
| CHIC | 27                                                                                           | 0    | 62   | 14.9 | 1.9        | 1.9  | 70         | 5.1        | 0.2          | 2.6  | 0.25  | 974.28  | 0            | 15.4     | 1.2         | 17.4 | 17.7                | 17.5 | -998  | -998 | -999 | -998 | -998 |
| CLAY | 29                                                                                           | 0    | 60   | 17.5 | 2.7        | 2.6  | 34         | 9.6        |              | 3.4  |       | 1.8     | 0            | 2        | 1.4         | 20.4 | 20.2                | 20.4 | -998  | -998 | 1.53 | -998 | -998 |
| CLOU | 30                                                                                           | 0    | 53   | 16.2 | 0.0        | 0.0  | 0          | 0.0        | 6            |      | d (   | 9)      |              | 18.2     | .4          | 20.0 | 19.1                | 19.6 | 19.5  | -998 | 1.95 | 2.11 | -998 |
| COOK | 31                                                                                           | 0    | 75   | 10.1 | 0.2        | 0.2  | 129        | 1.2        |              | 0.   |       | 8.8     |              | 11       | 0.0         | 16.8 | 16.9                | 16.4 | -998  | -998 | 2.06 | -998 | -998 |
| COPA | 32                                                                                           | 0    | 41   | 9.3  | 1.4        | 1.3  | 72         | 2.8        |              | 1.6  | 0.0   | 985.85  | 0            | 10.4     | 0.3         | 16.7 | 17.1                | 16.5 | 16.8  | 17.9 | 2.96 | 2.39 | 1.86 |
| DURA | 33                                                                                           | 0    | 53   | 18.4 | 2.1        | 2.1  | 71         | 4.7        | 0.2          | 2.5  | 0.00  | 988.79  | 0            | 20.1     | 1.0         | 20.4 | 19.7                | 20.0 | 20.0  | 20.9 | 1.43 | 1.47 | 3.54 |
| ELKC | 139                                                                                          | 0    | 55   | 12.8 | 4.2        | 4.2  | 71         | 6.0        | 0.6          | 5.9  | 0.00  | 944.34  | 1            | 13.4     | 2.1         | 15.6 | 17.3                | 15.4 | 15.8  | 17.6 | 2.11 | 2.88 | 3.60 |
| ELRE | 34                                                                                           | 0    | 56   | 9.9  | 2.1        | 2.1  | 66         | 2.5        | 0.1          | 2.4  | 0.00  | 964.26  | 0            | 13.1     | 0.0         | 15.8 | 16.5                | 15.5 | 16.1  | 17.9 | 2.13 | 2.40 | 2.49 |
| ERIC | 35                                                                                           | õ    | 60   | 12.7 | 3.9        | 3.9  | 79         | 6.4        | 0.5          | 5.5  | 0.00  | 942.12  | 1            | 13.4     | 2.2         | -999 | 16.9                | -999 | -999  | -999 | 1.77 | 1.67 | 2.06 |
| EUFA | 36                                                                                           | Ő    | 66   | 13.1 | 0.9        | 0.9  | 11         | 15.4       | 0.3          | 1.6  | 0.00  | 990.28  | 0            | 13.9     | 0.0         | 17.5 | 17.7                | 16.9 | 17.9  | 19.2 | 1.62 | 1.64 | 1.45 |
| FAIR | 37                                                                                           | Ő    | 39   | 12.3 | 2.8        | 2.8  | 88         | 4.6        | 0.2          | 3.5  | 0.00  | 966.14  | õ            | 13.5     | 1.4         | 16.5 | 17.7                | 15.8 | 16.6  | 18.7 | 2.09 | 3.38 | 3.52 |
|      |                                                                                              | ě    |      |      | 2.0        | 2.0  |            |            |              | 0.0  |       |         |              | 2010     |             |      |                     | 10.0 | 10.0  |      | 2.00 |      |      |



# From the titles of journal articles referencing Oklahoma Mesonet

## **Pilot Project Research Questions:**

- 1. How to identify who is using OK Mesonet data?
- 2. Where are they? (Geographically and disciplinarily)
- 3. How is the data used?
- 4. What are the data use specifics?
- 5. Are there *bibliometric patterns* in papers using OK Mesonet data?
- 6. Are there *datacentric patterns* in papers using OK Mesonet data?
- 7. What are the implications for management of OK Mesonet data?

### **Bibliometric Questions:**

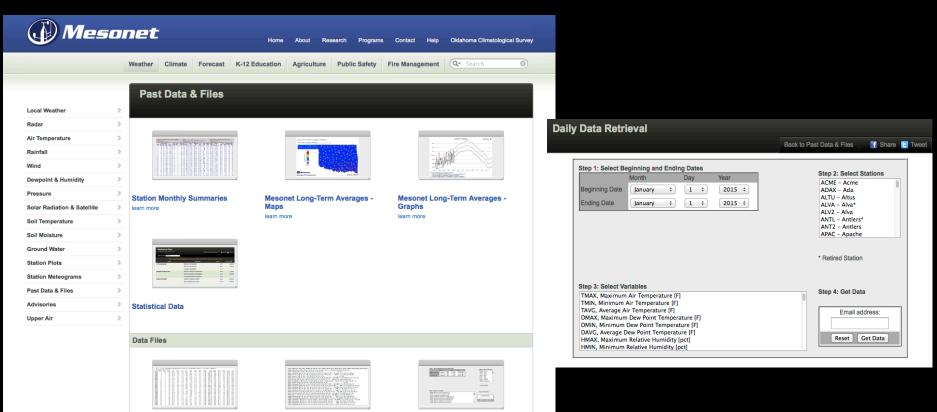
How to identify who is using OK Mesonet data?

Where are they? (Geographically and disciplinarily)

Are there bibliometric patterns in papers using OK Mesonet data?

### **Datacentric Research Questions:**

How is the data used?What are the data specifics?


Are there datacentric patterns in papers using OK Mesonet data?

### **Mesonet Research Question:**

## What are the implications for management of OK Mesonet data?

# **Bibliometric Questions:**

### 1. How to identify who is using OK Mesonet data?



### DataCite Content Service Beta

### doi:10.5067/GPMGV/MC3E/MULTIPLE/DATA203

This page represents DataCite's metadata for doi:10.5067/GPMGV/MC3E/MULTIPLE/DATA203.

For a landing page of this dataset please follow http://dx.doi.org/10.5067/GPMGV/MC3E/MULTIPLE/DATA203

Citation

Oklahoma Climatological Survey; (2013): GPM Ground Validation Oklahoma Climatological Survey Mesonet MC3E; NASA Global Hydrology Resource Center DAAC.

http://dx.doi.org/10.5067/GPMGV/MC3E/MULTIPLE/DATA203 RIS BIBTEX

## **Potential Bibliometrics Information**

Author(s) affiliation/locations Author(s) citation/co-citation networks

Paper/journal titles Paper citation/co-citation networks Publication date(s) Paper/journal discipline/emphasis Paper topic(s), keywords

Innovations/patents/models

OK Mesonet data source/citation/acknowledgements

### 995

#### The Oklahoma Mesonet: A Technical Overview

FRED V. BROCK AND KENNETH C. CRAWFORD University of Oklahoma, Norman, Oklahoma

#### RONALD L. ELLIOTT, GERRIT W. CUPERUS, AND STEVEN J. STADLER

Oklahoma State University, Stillwater, Oklahoma

#### HOWARD L. JOHNSON

University of Oklahoma, Norman, Oklahoma

#### MICHAEL D. EILTS

National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 23 June 1993, in final form 16 March 1994)

#### ABSTRACT

The Oklahoma mesonet is a joint project of Oklahoma State University and the University of Oklahoma, It is an automated network of 108 stations covering the state of Oklahoma. Each station measures air temperature, humidity, barometric pressure, wind speed and direction, rainfall, solar radiation, and soil temperatures. Each station transmits a data message every 15 min via a radio link to the nearest terminal of the Oklahoma Law Enforcement Telecommunications System that relays it to a central site in Norman, Oklahoma. The data message comprises three 5-min averages of most data (and one 15-min average of soil temperatures). The central site ingests the data, runs some quality assurance tests, archives the data, and disseminates it in real time to a broad community of users, primarily through a computerized bulletin board system. This manuscript provides a technical description of the Oklahoma mesonet including a complete description of the instrumentation. Sensor inaccuracy, resolution, height with respect to ground level, and method of exposure are discussed.

#### 1. Introduction

Scientists at Oklahoma State University and the University of Oklahoma independently recognized the need to establish a surface network for agricultural, hydrological, and meteorological monitoring nearly 10 years ago. With funding from the State of Oklahoma, they formed a joint project to develop the Oklahoma mesonetwork (abbreviated mesonet). The goals of the mesonet (Crawford et al. 1992) are to 1) operate a high quality network of 108 automated stations that measure about 10 variables each and transmit these data, in real time, every 15 min; 2) relay that information via a state telecommunications network to a central processing site for quality assurance, archival, product generation, and dissemination; 3) share this new data stream with the research community in Oklahoma and combine network data with other data streams for application in agriculture, meteorology, and

other disciplines; and 4) provide an efficient, cost-effective mechanism to share network data1 with a host of federal, state, and local government users (including public and private of

Besides the a logical goals, work must a energy conser system was co broad goals.

mittee of six University, tw steering comn form special t lecting meson

1 Those wishin

OK 73019-0628

Corresponding author address: Dr. Fred V. Brock, School of Mehoma Climatolog teorology, University of Oklahoma, Norman, OK 73019,

### 'FB OF SCIENCE"

#### The meson Search **Return to Search Results** one from the | Full Text Options V 6 Save to Other File Formats $\sim$

THE OKLAHOMA MESONET - A TECHNICAL OVERV

By: BROCK, FV (BROCK, FV); CRAWFORD, KC (CRAWFORD, KC); ELLIOTT, RL (E STADLER, SJ (STADLER, SJ); JOHNSON, HL (JOHNSON, HL); EILTS, MD (EILTS, M

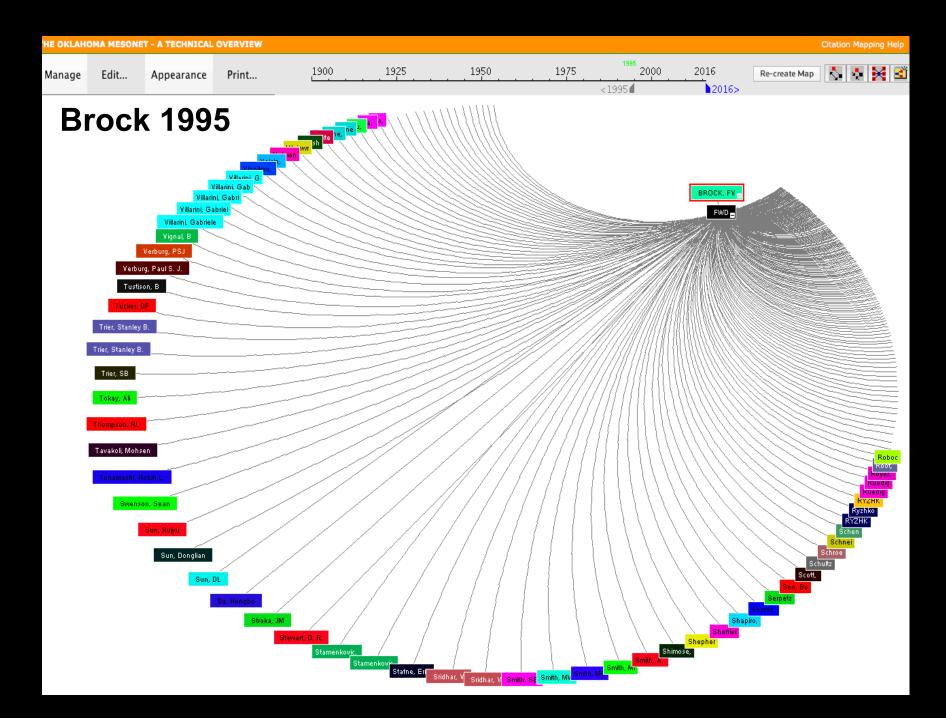
### JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY Volume: 12 Issue: 1 Pages: 5-19

DOI: 10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2 Published: FEB 1995 **View Journal Information** 

#### Abstract

The Oklahoma mesonet is a joint project of Oklahoma State University and the Univers stations covering the state of Oklahoma. Each station measures air temperature, humid rainfall, solar radiation, and soil temperatures. Each station transmits a data message e of the Oklahoma Law Enforcement Telecommunications System that relays it to a cent comprises three 5-min averages of most data (and one 15-min average of soil temperation guality assurance tests, archives the data, and disseminates it in real time to a broad co bulletin board system. This manuscript provides a technical description of the Oklahoma mesonet including a complete description of the instrumentation. Sensor inaccuracy, resolution, height with respect to ground level, and method of exposure are discussed.

**Dr. Fred Brock (first** OK Mesonet lab manager) et al.'s paper as both "concept symbol" (Small, 1978) and "black box" (Latour, 1987) for Mesonet




THOMSON REUTERS

0 in Data Citation Index

0 in SciELO Citation Index

| My                                                                                                                                                                                                                                                                                                                                  | Tools 👻 Search History Marked List 196                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                     | <b>√</b> 1 of 196 ►                                                                                                                                                 |
| EW                                                                                                                                                                                                                                                                                                                                  | Citation Network                                                                                                                                                    |
| LLIOTT, RL); CUPERUS, GW (CUPERUS, GW);<br>D)                                                                                                                                                                                                                                                                                       | 343 Times Cited<br>19 Cited References<br>View Related Records<br>                                                                                                  |
| ity of Oklahoma. It is an automated network of 108<br>dity, barometric pressure, wind speed and direction,<br>every 15 min via a radio link to the nearest terminal<br>ral site in Norman, Oklahoma. The data message<br>tures). The central site ingests the data, runs some<br>ommunity of users, primarily through a computerize | All Times Cited Counts<br>344 in All Databases<br>343 in Web of Science Core Collection<br>48 in BIOSIS Citation Index<br>1 in Chinese Science Citation<br>Database |



# Quality Assurance (opening the "black box")

VOLUME 27 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY OCTOBER 2010

474 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17

#### Quality Assurance Procedures for Mesoscale Meteorological Data

CHRISTOPHER A. FIEBRICH, CYNTHIA R. MORGAN, AND ALEXANDRIA G. MCCOMBS

Oklahoma Mesonet, and Oklahoma Climatological Survey, Norman, Oklahoma

#### PETER K. HALL JR.

Iberdrola Renewables, Portland, Oregon

#### RENEE A. MCPH

Oklahoma Mesonet, and Oklahoma Climatolog

(Manuscript received 18 December 2009,

#### ABSTRACT

Mesoscale meteorological data present their own challenge (QA) process because of their variability in both space and perform quality control at many different stages (e.g., senso sessment). As part of an ongoing refinement of quality a Oklahoma Mesonet continually review advancements and t article's aim is to share those reviews and resources with sc program. General QA considerations, general automated ter discussed.

#### 1. Introduction

stage

an e Proper interpretation of meteorological data requires ratin knowledge of its context, including its metadata and any auto quality assurance procedures applied to the data. Mesoprod scale data present their own challenges and advantages McP during the quality assurance process. Unfortunately, a D meteorological observation can become inaccurate durcroel ing many different stages of its life cycle. Although proogie active maintenance and sensor recalibration can greatly netw improve data quality (Fiebrich et al. 2006), some inac-

### Quality Assurance Procedures in the Oklahoma Mesonetwork

MARK A. SHAFER, CHRISTOPHER A. FIEBRICH, AND DEREK S. ARNDT Oklahoma Climatological Survey, Norman, Oklahoma

SHERMAN E. FREDRICKSON\*

National Source Storme Laboratory Marman, Oklahoma

Марси 2007

Vorman, Oklahoma

14 June 1999)

ccision makers alike. The models that sed by a wider community, from policy s to emergency managers' decisions to e network, the Oklahoma Mesonetwork

t principal components: an instrument ion. The instrument laboratory ensures standards established by the Mesonet al inspection of the performance of the omitor data each day, set data flags as nspection provides human judgment to

communication links. A QA manager y flow. The QA manager receives daily nicians in the field, and issues summary fesonet staff remain in contact through rese means of communication provide a us, to feedback on action taken by the

of the network through operational data ind long-term analyses. This manuscript de-7 assurance (QA) procedures developed course of building the Mesonet and emationally in May 1999. homa Mesonet operates 115 stations on a

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet

RENEE A. MCPHERSON,\* CHRISTOPHER A. FIEBRICH,\* KENNETH C. CRAWFORD,\* RONALD L. ELLIOTT,<sup>+</sup> JAMES R. KILBY,\* DAVID L. GRIMSLEY,\* JANET E. MARTINEZ,\* JEFFREY B. BASARA,\* BRADLEY G. ILLSTON,\* DALE A. MORRIS,\* KEVIN A. KLOESEL,\* STEPHEN J. STADLER,<sup>+</sup> ANDREA D. MELVIN,\* ALBERT J. SUTHERLAND,<sup>#</sup> HIMANSHU SHRIVASTAVA,\* J. D. CARLSON,<sup>+</sup> J. MICHAEL WOLFINBARGER,\* JARED P. BOSTIC,\* AND DAVID B. DEMKO\*

> \* Oklahoma Climatological Survey, Norman, Oklahoma + Oklahoma State University, Stillwater, Oklahoma # Oklahoma Cooperative Extension Service, Oklahoma State University, Norman, Oklahoma

#### (Manuscript received 11 January 2006, in final form 27 June 2006)

#### ABSTRACT

Established as a multipurpose network, the Oklahoma Mesonet operates more than 110 surface observing stations that send data every 5 min to an operations center for data quality assurance, product generation, and dissemination. Quality-assured data are available within 5 min of the observation time. Since 1994, the Oklahoma Mesonet has collected 3.5 billion weather and soil observations and produced millions of decision-making products for its customers.

#### 1. Introduction

VOLUME 24

duced millions of decision-making products for its customers.

State University (OSU) operate more than 110 surface observing stations comprising the Oklahoma Mesonet (Brock et al. 1995). Remote stations send data every 5

· I · I · I · OII ·

The University of Oklahoma (OU) and Oklahoma

2. Overview of the Oklahoma Mesonet

Scientists and engineers at OSU and OU planted the

### **Potential Datacentric Information:**

Air temperature (1.5 m) Air temperature (9 m) **Barometric pressure** Rainfall Relative humidity (1.5 m) Soil moisture (5 cm) Soil moisture (25 cm) Soil moisture (60 cm) Soil temperature (5 cm) Soil temperature (10 cm) Soil temperature (25 cm) Soil temperature (60 cm) Solar radiation (1.8 m) Wind speed/direction (2 m) Wind speed/direction (10 m)

### **Potential Mesonet Information:**

Mesonet installation site(s) [stated or calculated]

Data date(s) Data time(s)

Data resolution [minimum size of objects represented in data set] Data duration [varies for different measures]

Significant event(s)

Special calculations, methodologies, etc.

Other state mesonets used in study



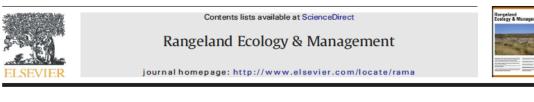
nodel results to get an 4.1 and 4.3), and the tions 4.2 and 4.4.

ocietal and economic

of intense precipita-

portant variable for

studies. Hence, we


### Modelling the re-intensification of tropical storm Erin (2007) over Oklahoma: understanding the key role of downdraft formulation

By FOLMER KRIKKEN and GERT-JAN STEENEVELD\*, Wageningen University, Meteorology and Air Quality Section, P.O. Box 47, 6700 AA Wageningen, The Netherlands

(Manuscript received 14 February 2012; in final form 19 July 2012) cumulative precipita-

### Showing the "close reading" of all papers

tion for the eight runs in Figs. 2 and 3. Also, Fig. 4a shows the precipitation accumulated over the maximum value per time step within domain 2. This domain has been selected because it covers a large part of Erin's re-intensification. We follow a strategy to accumulate the maximum precipitation value per time step (1 hour) to evaluate the model's capacity to produce the most intense precipitation, apart from the question whether the system's track is correctly forecasted. The observations originate from the Oklahoma Mesonet (Brock et al., 1995; McPherson et al., 2007) and are the maximum values per time step taken of a total of 31 weather stations distributed over domain 2.



### Drought Influences Control of Parasitic Flies of Cattle on Pastures Managed with Patch-Burn Grazing

J. Derek Scasta<sup>a,\*</sup>, David M. Engle<sup>b</sup>, Justin L. Talley<sup>c</sup>, John R. Weir<sup>d</sup>, Samuel D. Fuhlendorf<sup>b</sup>, Diane M. Debinski<sup>e</sup>

<sup>a</sup> Assistant Professor, Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA

<sup>b</sup> Regents Professors, Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA

<sup>c</sup> Associate Professor, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA

<sup>d</sup> Research Associate, Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA

<sup>e</sup> Professor, Department of Ecology, Evolution and Organismal Biology Department, Iowa State University, Ames, IA, 50013, USA

#### ARTICLE INFO

Article history: Received 9 June 2014 Accepted 13 February 2015

Keywords: ecology patch-burning pest management production pyric-herbivory rangeland

#### ABSTRACT

We compared the influence of patch-burn grazing to traditional range management of the most economically injurious fly parasites of cattle. Horn flies (Haemate (Musca autumnalis), stable flies (Stomoxys calcitrans), and horse flies (Tabanus spp.) locations in Oklahoma and Iowa, USA, in 2012 and 2013. Experiments at both locations three times on rangeland grazed by mature Angus cows. Grazing was year-long in O Iowa from May to September. One-third of patch-burn pastures were burned and managed pastures were burned completely in 2012 but not at all in 2013. Because of si we analyzed locations separately with a mixed effects model. Horn flies and face flie thresholds with patch-burn grazing but at or above economic thresholds in unburned r in lowa that were burned in their entirety had fewer horn flies but did not have fewer with no burning. There was no difference among treatments in horn fly or face fly pastures. Stable flies on both treatments at both locations never exceeded the econo of treatment. Minimizing hay feeding coupled with regular fire could maintain low Horse flies at both locations and face flies in Oklahoma were in such low abundance tl were difficult to detect or explain. The lack of a treatment effect in Oklahoma and var result of a drought year followed by a wet year, reducing the strength of feedbacks dri pastures burned with patchy fires. Patch-burning or periodically burning entire pastu a viable cultural method for managing some parasitic flies when drought is not a const © 2015 Society for Range Management. Published by Elsevie

#### Introduction

External parasites of beef cattle cause substantial financial losses, exceeding \$2 billion annually in the United States (Byford et al., 1992). et al., 2008). Considering that approximately 50 herd relies on the forage base of central North the ecology and management of these grasslands implications for fly parasite mitigation and prof J. D. Scasta et al. / Rangeland Ecology &

when taking pictures filled the frame with the animal. We also took all pictures within a discrete time window (Thomas et al., 1989) with the sun at our back, which enhances the visible detection of flies on cattle. Thus, digital zoom in the laboratory accounts for any variability and at the distances images were collected overcomes detection probability issues. Furthermore, we consulted the entomological literature for appropriate methods, conducted sampling under the guidance of a livestock entomologist, used an independent laboratory technician for all identification and counting (independent meaning this person did not know the pastures or cows and did not take the pictures), used digital images that serve as a record that could be re-examined if needed, assessed cattle of uniform black color (Franks et al., 1964), and revised our methods from our 2011 study (Scasta et al., 2012) to incorporate digital technology.

Monthly precipitation and monthly mean temperature data from both state automated weather observation networks were collected from the Mt. Ayr, Iowa Mesonet station and Marena, Oklahoma Mesonet station and summarized (Iowa Environmental Mesonet, 2014; Oklahoma Mesonet, 2014). Precipitation was summarized on the basis of the accumulating monthly total for 2012 and 2013 and plotted with the long-term mean. Monthly mean temperature was summarized on a monthly basis and plotted with the long-term mean. Long-term means for the stations were calculated for 1893 to 2013 for Mt. Ayr, Iowa and 1999 to 2013 (the period of record) for Marena, Oklahoma.

292

CrossMark

# **5 Billion Data Points and Counting.... Prediction Explanation** Time **Events Application** Description Mesonet